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SUMMARY. This article proposes a simple method to determine single or multiple temporal clustering on 
a variable size population. By a transformation of the data set, the method based on a regression model 
allows consideration of a variable population size during the time of study. A model selection procedure and a 
resampling method are used to  select the number of clusters. The results have applications in epidemiological 
studies of rare diseases. 
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1. Introduction 
In epidemiological studies, when the etiology of a disease 
has not yet been well established, it is sometimes required 
to examine data for obtaining evidence of temporal cluster- 
ing or of cyclical clustering, as in seasonal variations. Let 
X I ,  . . . , X N  be independent and identically distributed (i.i.d.) 
random variables that denote the times of occurrence of N 
events in an interval (0, T ) .  We wish to  test the null hypoth- 
esis that the events are uniformly distributed against the al- 
ternative that they cluster within some subintervals of (0, T) .  

Ederer, Myers, and Mantel (1964) developed a test for 
temporal clustering using a cell-occupancy approach. They 
divided the time period into disjoint subintervals. This test 
statistic is simply the number of cases occurring in a subin- 
terval. Under the no-clustering hypothesis, the N cases are 
randomly distributed among the subintervals. However, the 
resulting chi-square test (used to  test the multinomial distri- 
bution) does not yield an efficient method. 

Consider the following hypothetical example. Suppose we 
observe a rare disease during 1 year in a little town, say Clus- 
terville. The number of known events is N = 42 for the whole 
year. The study starts the first day and the first event occurs 
on the 11th day. Every 10 days, we observe another event ex- 
cept from day 181 to day 241, when one event occurs every 
5 days. The study stops at day 365. It is clear that [181,241] 
is a time window with clustered events. Tango (1984) pro- 
poses a test of temporal clustering based on the distribution 
of counts in disjoint equal time intervals. Whittemore and 
Keller (1986) showed that the distribution of Tango’s index 
is asymptotically normal. Applying this procedure to Clus- 
terville, assuming six time intervals does not allow rejection 
of the null hypothesis of uniformity (p = 0.2). Note that the 
cluster interval [181,241] does not match the interval using 
Tango’s index, which does not contain the event occurring at 
day 181. 

Naus (1965) introduced a test known as the scan test. The 
test statistic, the maximum number of cases observed in an 
interval of length t ,  is found by scaling all intervals of length t 
in the time period. Statistical significance of the scan test 
is assessed by using tables of pvalues computed by Naus 
(1966) and Wallenstein (1980) for selected interval lengths, 
time lengths, and sample sizes. Weinstock (1981) proposed a 
generalization of the scan test that is adjusted for changes 
among the population at risk. Unfortunately, with the sim- 
ulated example, the scan test does not provide a significant 
statistic to reject the uniformity hypothesis (with six subin- 
tervals, p = 0.38). 

An efficient method for detecting temporal clustering is 
proposed by Kulldorff and Nagarwalla (1995). With the scan 
statistics with variable window, the cluster time window size 
does not need to be chosen a priori. This test is the gen- 
eralized likelihood ratio test for a uniform null distribution 
against an alternative of nonrandom clustering. Bootstrapped 
simulations are performed to carry out the significance test. 
For the example, we obtain p = 0.09 with 1000 simulations, 
and we fixed the minimal number of points at five. The test 
only considers clusters that contain five or more points (Na- 
garwalla, 1996). An extension of this method is presented by 
Kulldorff (1997). The scan statistic with a variable window is 
used for detecting disease clusters in heterogeneous popula- 
tions. He introduced a spatial scan statistic for the detection 
of clusters not explained by the baseline process in heteroge- 
neous populations. 

Larsen, Holmes, and Heath (1973) developed a rank-order 
procedure. The time period is divided into disjoint subinter- 
vals that are numbered sequentially. The test statistic is the 
sum of absolute differences between the rank of the subinter- 
val in which a case occurred and the median subinterval rank. 
This test is sensitive only to unimodal clustering and cannot 
distinguish between multiple clustering and randomness. 
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Huntington and Naus (1975), Cressie (1977), and Hwang 
(1977) derived and then Naus (1982) accurately approximated 
the probability of at least one cluster. Barton and David 
(1956) found the distribution of the number of clusters of 
size two. McClure (1976) obtained asymptotic results for the 
distribution of the number of clusters of a given size. Glaz 
and Naus (1983) established the expectation, variance, and 
approximate distribution of the number of clusters of a given 
size. So, with rare diseases, a long time of study is neces- 
sary to examine data for evidence of temporal clustering. The 
problem is that, in this case, the population at risk evolves 
during time. Due to a natural increasing or to a seasonal evo- 
lution, the population at risk is not constant during the time 
of study. 

In the next section, we present a new method for deter- 
mining data clustering. Based on a simple transformation of 
the data, our method determines a time window with excess 
events and, for any position of the window, it scans continu- 
ously across the period of observation. Moreover, the method 
is effective with changes in the population at risk. Existence 
of one or more clusters is determined by using bootstrapped 
simulations and a classical model selection procedure. The re- 
gression method is explored using simulations that allow for 
an examination of its properties and also on the classical Knox 
data set. Another data set consists of 62 spontaneous hemop- 
tysis admissions (pulmonary disease) at Nice hospital from 
January 1 to December 31, 1995. Detecting periods of signif- 
icant cluster occurrences brings precious information on the 
disease. The purpose of this investigation is to adapt condi- 
tions of admission or treatment of predisposed patients during 
a favorable period. Another objective is to point out potential 
climatic factors, like temperature or hydrometry, that influ- 
ence the disease occurrence. Nevertheless, since Nice is situ- 
ated in the south of France, each summer, a lot of tourists 
increase the population at risk. An estimation of this popula, 
tion is used in our model for detecting clusters. 

2. Method Presentation 
The approach is first based on a transformation of the data set 
in order to produce values corresponding to the time (the dis- 
tance) between two successive events. Under the no-clustering 
hypothesis, these values can be estimated by a constant, i.e., 
the mean distance. On the contrary, a piecewise constant 
model improves the fitting. A classical criterion for selecting 
models allows determination of the presence of clusters. Sta- 
tistical tests for cluster detection must have a correct nominal 
(Y level. Since the proposed method is not a conventional sta- 
tistical test, we propose using bootstrapped samples to obtain 
a pvalue and to compare its performance with those of exist- 
ing statistical tests. At the end of this section, we propose a 
simple transformation of the data set that considers changes 
in the population at risk. 
2.1 Data Thnsfomnataon 
Let X I , .  . . , X N  be defined as in the Introduction. Without 
loss of generality, set T = 1 throughout this section. Suppose 
that X I , .  . . , X N  are dropped at random in the unit interval 
(0,l) .  As indicated in Figure 1, denote the ordered distances 
of these points from the origin by z (~ )  (i = I,. . . , N )  and 
set yi = z(i) - z ( ~ - ~ )  ("(0) = 0).  Assuming that the Xz 's  are 
i.i.d. uniform U(0, l ) ,  the random variables X ( l ) ,  . . . , X ( N  are 
then distributed as N-order statistics from a uniform UtO, 1) 

' + * * * * * . * . * * ' * * * .  
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Y . . . . . . . . .  

0 10 20 30 40 

Y1 YZ Y N  

0 = Z(0) l ( 1 )  l ( 2 )  . . . . l (N-1)  z ( N )  

Figure 1. Random division of an interval. 

parent, i.e., X ( i )  follows a beta distribution @ ( i , N  - i + 1) 
and Y,  = X ( i )  - X ( i - l )  has a beta distribution @( l ,N)  
(see David, 1980). A slightly efficient method for detecting 
nonrandom clusters of points on a line is, e.g., by verifying, 
using a Kolmogorov-Smirnov test, that the yi 's  have a beta 
distribution p(1, N ) .  This method is equivalent to testing the 
assumption of uniformity of the Xi ' s .  In the case where a 
cluster is present, the test does not provide the time window 
with excess events. In the next section, we present our method 
for detecting, according to  the Yi values, the cluster's presence 
and also for determining its ranges. 

2.2 Data Fatting 
Let (21,. . . , Z N )  be a sample of X and ( y l , .  . . , Y N )  be the 
corresponding sample of Y = (Yl, . . . , Y N )  defined as in the 
previous section. Consider the data set ( i , y i ) i=l , , . . ,~ .  Under 
the no-clusters hypothesis, an appropriate regression on this 
data set is the constant function 

N 
1 
N j '  

j=1 

f(i) = jj = - c y .  

Figure 2 presents the regression function and the data 
points corresponding to the Clusterville example. Assume 
that events ~ ( k ) ,  . . . , z ( k + l )  are clustered, i.e., 

k+l - N  
1 1 

a c = ,  c Y i < < ~ y i = & *  
i=l i=k+l  

In this case, a better regression model than (1) is the stepwise 
regression function 
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where V E  is the mean of the yi’s without {yk+l,. . . , yk+l}, the 
mean of the distance between the nonclustering events, and 
I A ( ~ )  = 1 if z E A and equals zero if not. 

Moreover, with the same approach, the regression model to 
determine n clusters is 

f(i) = YCIU ...uc, XIU(i)+SC, xIcl(i)+...+Yc , xIc*(i), (3) 

where U = [l; kl] U [kl + I1 + l ;k2 ]  U ... U [kn + In + 
1; N] = C1 U . . .  UC, is the uniform repartition range and 
C, = [k,  + 1; k, + Zp] for p E (1, . . . , n} are the clustering 
ranges. In order to compute the bounds kl ,  11,. . . , kn ,  In of 
each cluster, one needs to  solve the classical least squares 
problem, 

(4) 

Figure 2 shows the regression function (2) on the Clusterville 
data set and clearly indicates the presence of a cluster between 
the 19th and 30th events. 

To determine the presence of clusters, to accept the 
uniformity hypothesis, and also to select the number n of 
clusters, we use classical criteria, i.e., the Akaike information 
criteria (AIC; Akaike, 1974) or the Bayesian information 
criteria (BIC; Schwartz, 1978). Each different number of 
supposed clusters corresponds to  a different regression model 
with a different criterion value. For example, the BIC 
corresponding to a constant (no cluster) regression function 
on the Clusterville data set is 72.2, against -m for the 
function corresponding to the single-cluster model (2). 

We apply the method to obtain several models with 
different numbers of clusters. Once k and I ,  the cluster 
bounds, are computed for each model, a simple approach to 
determining the number of clusters is to select the model with 
the smallest criterion value. However, to avoid sample effects 
and to compare the method with other statistical tests, we 
compute again the criterion on a 1000 bootstrapped samples 
of (i, yi)i=l,...,,. Let CRIG and CRI?’ be the respective 
values of the criterion for the i cluster model and the i’ (i < i’) 
cluster model for sample j .  The value 

gives an idea about the (Y level (nominal level of a conventional 
statistical test) of the proposed method. For example, &,IT 
is the percentage of bootstrapped samples for which the one- 
cluster model is selected with the criterion CRIT against the 
no-clustering model. Classically, a::1T < 0.05 is considered 
as significant and the i cluster model is chosen against the 
i’ cluster one. The criterion choice (AIC, BIC, or other 
penalization) is debated in Section 3.1.1. 

In the next section, we describe the difficulties of testing 
nonrandom clustering when the population at risk varies 
during the time period. A simple modification of the data 
transformation allows solving this problem, and the method 
presented above provides an efficient solution. 

2.3 Variable Population Size Eflects 
Suppose now that Clusterville is situated near a beautiful 
beach. Each summer (day 182 to day 243 for July 1 and 

August 31), the local population accommodates a lot of 
tourists and, as a consequence, the number of inhabitant 
doubles in this period. The number of the rare disease events 
follows the same rule and the data set presented in the 
Introduction is uniform. 

During the studied period, the number of people who 
should be affected by the disease is modified due to the natural 
population increasing or to seasonal immigration. Denote by 
R(t) the time function that gives the growth rate of the risk 
set. To take the population evolution effects into account in 
clustering studies, consider the transformation of the data set 
(2 7 Yi )i=l,. . . , N 3 

(i,&) = (i, yi x R(zi))  for i = I , .  . . , N .  (5) 

Let us precisely determine what R(t )  should be. R(t) = 1 
corresponds to a constant population. If the population size 
(no) increases regularly and doubles in 1 year, R should be 
an increasing function, 

1 
365 

R(t) = 1 + -t for E [0,365]. 

Thus, R(t) x no estimates the population size at time t .  

doubles in the summer, the population risk rate function is 
For the Clusterville example, because the population 

R(t) = 1[l,182)U[244,365](t) + 1[182,244)(t) 
for t E [1,365]. (6) 

The corresponding data set is (2, ci) = (i, 10) for i = 1 , .  . . ,42.  
The constant regression function (y = 10) minimize the 
criterion and no clustering can be detected. 

3. Applications 
Cluster determination is important for detecting epidemics 
and for predicting patient numbers (e.g., in order to mobilize 
enough doctors in a hospital). The determination of seasonal 
clusters allows foreseeing an increase in the mortality number. 
Consequently, hospital managers can decide on the supple- 
mentary staff needed. Several options are proposed by the 
algorithm. Users can provide the minimal event number 
CYln := (ki - l i )  that defines the cluster i. Observe that 
the algorithm does not necessarily need this number, but it 
decreases computational time. In the same way, the user can 
decide on a minimal distance between two successive clusters 
Dqin ._ .- ( l i  - k i + l ) .  

Table 1 presents the algorithm used to determine one 
cluster and to  decide about the uniformity hypothesis. The 
examples and simulations were implemented on a Ultra-Sparc 
Unix workstation using the S-Plus, Version 3.4, Release 1 
software (Mathsoft, 1996). 

3.1 Simulation Studies 
The first simulation intends to illustrate the criterion effect 
and to compare the proposed method with classical tests. The 
second example presents a case with multiple clusters. 

3.1.1 One-Cluster Detection. The simulated data consists 
of one sample of N observations. The time events X are 
generated from a mixture of two uniforms: N - 10 observations 
are sampled from U[O, 1001 and 10 are sampled from U[35,50]. 
One simulation is done with each value of N .  On each of these 
data sets, we perform the test proposed by Tango (1984), the 
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Table 1 
One-cluster C determination algorithm 

Inputs: X ,  R, Cmin 

Y ( i )  +- X ( i )  - X(i.-ll for i E (2,. ... N} and Y(1) = X(l) 
F(i) +- Y(i)R(i) 

for k = 1 to N - Cmin do 
for 1 = k + Cmin to N do 

P(i)  +- $3 x IlJ(2) + yc x Ic(i) 
N 

A(k ,  I )  +- c(8(i) - ?( i ) )2  
i=l 

end for 
end for 

( k , i )  +- argminA(k,l) 

scan test, the variable scan test, and our method with different 
criterion choice. Results are given in Table 2. Note that, for 
these simulations, we used a window of size 15 for the scan 
test and six cases as the minimal size for the variable window, 
and we divided the interval by seven for Tango's index. 

We use classical criteria, i.e., BIC(i)  = Nlog((l/N)llyi - 
f(i)1I2) + log(N)d(i), where, in the penalty term log(N)d(i), 
d ( i )  is the number of parameters of the model i. With no 
cluster, the regression function has one parameter estimated 
by g; with one cluster, the regression function has four 
parameters estimated by gc, jjc, k ,  and 1. With the AIC, 
the penalty term is 2 4 4 ,  and we also take log(log(N))d(i), 
as usual in a multivariate context. 

For the criterion, a large penalty term allows obtaining a 
conservative procedure, i.e., the simplest model with a few 
clusters is more significant with a large penalization (log( N)) 
than with few ones (two or log(log(N))). According to our 
experience and because the results obtained are similar to 
those of the classical statistical tests, the AIC criterion seems 
well adapted. The BIC is more conservative, i.e., in the 
simulation (Table 2), the cluster presence is never significant. 
With the log-log penalty, the model with one cluster is always 
more significant than one with no clusters, even when its 
presence is not clear ( N  = 50). 

3.1.2. Multiple Clusters. To illustrate the case with several 
distinct clusters, the simulated data consist of 100 samples 
of N = 50 observations. The time events X are generated 

Table 2 
Simulation results 

Model N =  25 N = 3 0  N = 3 5  N = 4 0  N =50  

Tango's index 0.015 0.028 0.056 0.17 0.31 
Scan test 0.042 0.065 0.09 0.14 0.29 
Variable scan 0.03 0.055 0.09 0.08 0.12 
a:;' 0.004 0.025 0.03 0.048 0.087 

0.08 0.16 0.27 0.4 0.703 "0 1 
0.001 0.001 0.001 0.002 0.008 

dIC 
I& log 

ao ,1  

as a mixture of uniform samples, i.e., 10 are sampled from 
U[30,35], 10 from U[45,50], 10 from U[60,70], and 20 from 

We perform the algorithm with minimal cluster sizes of 
Cyin = 5 events and a minimal distance between two clusters 
of two events (meaningful only for the model with multiple 
clusters). Thus, we obtain 100 values for at:', at,', at:', 
af,', af',,', and a$:'. The boxplots of these values are shown 
in Figure 4. 

According to these results, due to the few cases between two 
successive clusters, the model with only one cluster is selected 
(af;' < 0.05). Models with more than one cluster are always 
less significant than one with a single, large cluster. The 
percent of bootstrapped samples for which only one cluster 
is selected against the two- or the three-clusters model, af',,' 
or a?;', is not significant. 

An example of the regression functions (Figure 3) shows 
how the method detects only one, two, or three clusters. 
Though the three clusters in [25,35], [55,65], and [75,80] are 
simultaneously detected, the more significant model supposes 
a unique, large cluster. 

3.2 Knox Data Set 
The first real data set to illustrate the method consists of 
35 cases of the birth defects esophageal atresia and tracheo- 
esophageal fistula observed in a hospital in Birmingham, 
United Kingdom, between 1950 and 1955. It was first 
published by Knox (1959) and subsequently analyzed by 
Weinstock (1981) using a scan statistic of fixed width and 
by Nagarwalla (1996) using a scan statistic with a variable 
window. The data can be found in the Appendix. It includes 
the number of days past January 1, 1950, on which each case 
was observed. The total time period of the study was 2191 
days. 

U[O, 1001. 

_I 
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Boxplots for the at:', at,', a$', cufiC, c&', 
values computed on 100 samples. 

A comparison between the different tests used on this data 
set is summarized in Table 3. By using the AIC criterion, on 
each of the 1000 bootstrapped samples, the model with only 
one cluster is better than one with noncluster, at;' = 0. The 
most likely cluster is the set of 15 cases beginning with the 
case on day 1233. 

Moreover, the model with two clusters has a significant 
a$' = 0.001 value compared with the nonclustering hypoth- 
esis. In fact, the two-cluster model detects the well-known 
cluster [1233, 14911 with 15 cases in 258 days and a second 
cluster [2049, 21741, with 7 cases in 125 days. According to 
these results, [2049, 21741 may be the beginning of a second 
cluster that is not significant compared with the existence 
of only one cluster a$' = 0.64, perhaps because the study 
stops at day 2191. 

Because the study time is large, this second cluster may 
be due to the natural increase of the population. In the next 
example, we illustrate our method by considering a variable 
population size. 

3.3 Hospital Hemoptysas Admission 
The method is used to detect clusters of minimum size Cyin = 
6 events. This number is chosen according to the Nice hospital 
pneumologic team, which estimated that more that six events 
in a short time can disturb the functioning of the hospital. 
Table 4 summarizes the results obtained for data presented 
in the Appendix. 

The model with only one cluster minimizes the AIC 
criterion. The most likely cluster is the set of 14 cases from day 
58 to day 87. Note that the model with two clusters provides 
a cluster in summer (day 187 to  201). This model can be 
selected against the constant model (a?? = 0.026). Nice is 
in the south of France and had 355,000 inhabitants on January 
1, 1995, and has a regular population increase of 0.72% per 
year. Moreover, there are 55,000 tourists in July and August 
(data provided by the tourist office of Nice). In this case, the 
corresponding R(t) function is given by 

55,000 
355,000 +- 1[182,244](t)r 

72t 
R(t) = + 10,000 x 365 

where t E [I, 3651 is expressed in days. Results obtained on 
the transformed data set are presented in Table 4. 

Table 3 
Knox data set results 

Model pValue Cluster range 

Tango's index 0.0009 
Scan test 0.017 
Variable scan 0.01 
"0 1 

"0 2 
"A' 12 0.63 

0 [ 1233,14911 
0.001 [1233,1491] [2049,2174] 

AIC 

dIC 

Note that the model with one cluster is selected. The main 
difference between these results and those obtained without 
considering the evolution of the population at risk is as 
follows: The model with two clusters, the second one being 
in the summer, is not selected against the model with zero 
cluster. The fact that more events occur in [187, 2011 is due 
to  the presence of tourists. 

The significant cluster is detected in winter (February 27- 
March 28). A study of the climatic factors in the Nice area 
shows that this period had very low temperatures (Berthier 
et al., 2000). 

4. Discussion 
The presented method allows one to detect several clusters 
during a study time. Based on a constant regression model, 
the data transformation provides an attractive visualization 
of the clusters. Our approach can easily be generalized for 
changes in the population at risk by modifying the data 
transformation according to the population growth rate. 

The number of clusters and the number of cases are the 
important parameters in terms of computing time; the time 
period (number of days) has no effect on computations. 
For multiple clustering, because the algorithm is based on 
loops, it cannot, within a reasonable computational time, 
detect more than three clusters. For each of the data sets in 
Section 3.1.2, we need around 30 minutes (central processing 
unit [CPU] time) to obtain the results with the model 
supposing three clusters, 5 minutes for two clusters, and 
less than 30 seconds for detecting one cluster. Nevertheless, 
the introduction of minimal cluster size Cyin and, minimal 
event number between two successive clusters D Y  allows 
reduction of the computation time. 

The choice of the criterion is a much debated question. 
Muller (1992) presented a summary on this subject. In our 
context, with a small number of cases, we used the Akaike 
information criterion . 

And last, note that the method has the potential to detect 
nondistinct clusters. Of course, this situation may not be of 
interest. Suppose two clusters are in the time periods [a,c] 
and [b,d] ,  where a < b < c < d. In [b,c], the two clusters 
are confounded. The piecewise regression function can be 
adjusted with the mean of the nonclustering period, two 
constants for the intervals [a, b] and [c, d], and a lower value 
in [b, c]. 

A possible extension of this method to two-dimensional 
spatial clustering problems is t o  transform the data as in 
Section 2.1 to construct a distance between events. The 
Euclidean distance to the nearest neighbor may be an a p  
propriate way to accomplish this. For space-time clustering, 
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Table 4 
Hospital hemoptysis admission results 

Without With 
transformation Cluster range seasonal variation Cluster range 

~~ 

,AIC 0 1  0.024 [58,871 0.02 158,871 
,dIC 0.2 0.026 [58,126] [187,201] 0.30 

the data points would be in three or higher dimensions, and 
one could also use the Euclidean distance. 
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RBSUMB 
Dans cette article, nous presentons une methode simple pour 
determiner la presence d’un ou plusieurs agregats d’evene- 
ments ternporaux au sein d’une population de taille vari- 
able. La mkthode est basee sur un modille de regression par 
morceaux qui aprbs transformation des observations permet 
de tenir compte d’eventuelles modifications de la population 
B risque. Le choix entre les differents modgles et du nombre 
d’agrkgats se fait par des procedures de reechantillonnage. 
Nous avons applique cette approche B 1’6tude de la repartition 
de cas de maladies rares. 
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APPENDIX 

Knox Data Set 
Cases of esophageal atresia and tracheoesophageal fistula over 
2191 days from 1950 to 1955. The mean distance between 
adjacent cases jj is 62.09 days, and the standard deviation is 
86.48 days. 

170 316 445 468 938 1034 1128 1233 1248 1249 1252 

1259 1267 1305 1385 1388 1390 1446 1454 1458 1461 1491 
1583 1699 1702 1787 1924 1974 2049 2051 2067 2075 2108 
2151 2174. 

Hospital Hemoptysis Admission Data Set 
Days of hemoptysis admission at Nice University Hospital 
from January 1 to December 31, 1995, are as follows: 

2 8 23 29 43 48 58 60 61 63 69 71 74 74 78 
80 85 86 86 87 93 105 106 108 115 117 121 126 135 140 

141 156 159 179 187 188 188 191 191 198 201 214 225 225 235 
235 239 249 262 271 279 279 282 292 296 302 317 323 337 342 
352 354. 




