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Abstract 

In medical statistics, the logistic model is a popular choice for the analysis 
of the dependence between a response variable and one or more 
explanatory variables. The response variable is the log odds and it is a 
linear function of explanatory variables. This type of modeling is 
restrictive, as the behaviour of the log odds can be best represented by a 
smooth non-linear function. Thus, we use a representation B-spline, where 
the number and location of knots are seen as free variables, is used to 
improve the fitting. For a piecewise linear spline, knots are points where 
the slope is changing in the shape of the function. Therefore, a quick 
change of slope allows to interpret the knot location as a threshold value. 
The use of MCMC simulation techniques is a very important 
computational tool in Bayesian statistics. These methods belong to a class 
of algorithms for sampling from target distributions on a space of fixed 
dimension. The Reversible Jump Markov Chain Monte Carlo (RJMCMC) 
algorithm, allows simulations from target distributions on spaces of 
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varying dimension. One of the main purposes of the present investigation 
is to use this RJMCMC method for modeling the log odds by a B-spline 
representation with an unknown number of knots at unknown locations. 
The method is illustrated with simulations and a real data set from an in 
vitro fertilization program.  

1. Introduction 

Logistic regression is a powerful and flexible means to analyze the relationship 
between a dependent dichotomous variable (e.g. which only takes two possible 
values) and one or more risk factors (e.g. explanotary variables). It is a method very 
used in applied research, but it assumes that these explanotary variables have a linear 
effect on the model. This assumption is restrictive; in fact in most of problems the 
underlying processes are complex and not well understood. Using spline functions 
seems to be an interesting alternative to study this relationship. It permits to detect 
the possibility of non-linear effects of the explanotary variables. The name spline 
function was introduced by Schöenberg (1) in 1946. The real explosion in the 
theory, and in practical applications, began in the early 1960s. Spline functions are 
used in many applications such as interpolation, data fitting, solving numerically 
ordinary and partial differential equations (finite element method), and in curve and 
surface fitting. For survival data analysis, Sleeper and Harrington (2) introduced 
spline function into the Cox model. Kooperberg et al. (3) developed the hazard 
regression (HARE) method which uses piecewise linear regression splines to model 
the hazard function. The diversity of applications exists due to the great flexibility of 
splines. But, the main difficulty of splines is the selection of the number and location 
of knots. In this paper, we utilize the Reversible Jump Markov Chain Monte Carlo 
(RJMCMC) technique introduced by Green (4) to handle this difficulty. 

In recent years the use of MCMC simulation techniques has been a very 
important computational tool in Bayesian statistics. These methods belong to a class 
of algorithms for sampling from target distributions on a space of fixed dimension. 
The RJMCMC algorithm allows simulations from target distribution on spaces of 
varying dimension. One application is the comparaison of models: the “true” model 
is unknown but is assumed to come from a specified class of parametric model 
{ }.,, 10 "MM  

One of the main purposes of the present investigation is to use this RJMCMC 
method for modeling the logit function by a B-spline representation with an 
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unknown number of knots at unknown locations. Considering the spline knots as 
free parameters implies more flexibility and improves data approximation. 
Moreover, the use of spline allows both defining threshold values and removing the 
linearity assumption of the logit function. If the estimation of the logit function is 
based on piecewise linear splines, the knot location corresponds to a break point in 
the linearity, so a quick change of slope can be interpreted as a point separating the 
variable range in two parts and the knot location corresponds to a threshold value. 
Finally, the RJMCMC algotrithm gives directly the knot number without using a 
model selection criterion and it allows to estimate a wide range of features for the 
function of the interest. This approach has been introduced by (9) and developped by 
severals authors ((1)). 

The paper is organized as follows. In section 2, a short review of the spline 
functions and the logistic model is given. In section 3, we shall introduce the 
Reversible Jump MCMC algorithm, and we give two applications in section 4 with 
simulations and a real data set from an in vitro fertilization program. 

2. The Model 

2.1. Spline functions 

Let ( ) ( )1210 +=<<<<<= kk rbrrrar "  be a subdivision of k distinct 

points on the interval [ ]ba,  on which the x variable is valued. We denote the points 

( )krr ...,,1  as the k interior knots, 0r  and 1+kr  as the boundary knots. The spline 

function ( )xs  used to transform the x variable is a polynomial of degree d (or order 

)1+d  on any intervals [ ],,1 ii rr −  and has 1−d  continuous derivatives on the open 

interval [ ]., ba  These functions provide great flexibility for fitting data, which is 

controlled by the number of knots. Spline functions belong to a linear functionnal 
space of dimension .1 kd ++  The most popular basis function for this linear space 
is given by Schoenberg’s B-splines, or Basicsplines, and is denoted by 

{ ( ) ( )}rBrB d
kd

d ,...,,, 11 ⋅⋅ ++  for a fixed sequence of knots ( ) ....,,1
′= krrr  Their 

structure is advantageous as it requires less computation as compared to other basis 
functions such as the truncated power basis (Eubank (15); Ramsay and Silverman 
(16)). De Boor (5) proposes a recursive algorithm to compute B-splines of any 
degree from B-splines of a lower degree. 
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We can define B-spline basis functions by: 
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where 1...,,1 ++= dkj  and .1...,,2 += ds  Thus, each basis function is non 

zero in a limited interval spanned by a 1+d  adjacent knots which leads to stable 
estimates and reduces computation. These are piecewise polynomials with continuity 
constraints on the polynomial and its first 1−d  derivaties at the interior knots. 

So, a spline function can be written 

( ) ( )∑
++

=

β=β
1

1

,,,,
kd

i

d
ii rxBrxs  (1) 

where ( )′ββ=β ++ kd 11 ...,,  is the vector of the spline coefficients and 

( )′= krrr ...,,1  is the vector of the interior knots. We can extend to the multivariate 

case by using additive models. With additive modeling (6) one can to decompose a 
function of the form ( ) ( )pXXhXh ...,,1=  by a sum of functions of the individual 

components of X, where ( )XhY =  is the response variable and ( )pXXX ...,,1=  

the explanotary variables. 

Let ( )ii xy ,  the observations, where each ix  is a p-vector ( )....,,1
i
p

i xx  So, h is 

defined by: 

( ) ( ) ( )∑
=

===
p

i
jjp XhXXhXhY

1
1 ,...,,  (2) 

and, an estimator s of f can be given by: 

( ) ( ) ( )∑
=

β==
p

j

jj
jjp rxsxxsxs

1
1 ,,,...,,  (3) 

where ( ) ( )′=′ββ=β ++++
j

dk
jjj

dk
jj

jjjj
rrr 1111 ...,,,...,,  for pj ...,,1=  and each 
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function js  is defined according to the equation (1). If iX  and jX  are two 

variables, and the response variable depends on the combination of levels of iX  and 

,jX  then iX  and jX  are said to interact. We incorporate a term to model this 

interaction; thus the model can be represented by an additive model including 
multiplicative interaction of order 1, as follows 

( ) ( ) ( ) ( )∑ ∑
= <

β×+β==
p

j ji

ijij
jiij

jj
jjp rxxsrxsxxsxs

1
1 .,,,,...,,  (4) 

2.2. Spline logistic regression model with free-knots 

The logistic model is used to study the relationship between a dichotomous 
variable (or response variable) and one or more explanotary variables. This model 
estimates the probability of a certain event occurring. The specific form of the 
logistic regression is 

( ) ( )
( )

,
exp1

exp

0

0
′α′+α+

α′+α
=

x
xxf  (5) 

where ( )xf  is the expected value of a randomly obtained proportion of the 

subpopulation corresponding to the vector ( ) ,...,,, 21
′= pxxxx  where 0α  and 

( )′αα=α p...,,1  are the regression coefficients which have to be estimated from 

the data. We can define the logit function g as follows 

( ) ( )
( ) .1ln 0 xxf

xfxg α′+α=
−

=  (6) 

This equation shows a linear relation between the logit function and the 
explanotary variables. This type of modeling is too restrictive, in fact the behavior of 
the logit function can be non-linear. The use of splines in this regressive model 
allows the investigation of non-linear effects with continuous covariates and 
introduces a nonparametric character. The tuning parameters for regression splines 
are the number k and the location of knots. In this work, we model the logit function 
(6) with B-splines with free-knots in order to allow maximum flexibility and 
improve the fit. 

This approach has been used by Denison (9), Lindstrom (14). More precisely, a 
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Markov chain Monte Carlo algorithm is used to estimate a Bayesian version of the 
B-spline model. Unlike, Dimatteo (13) and Johnson (17) which use a prior on the 
coefficients ,β  we estimate these parameters with least-squares estimator. Thus, we 

avoid the “delicate re-balancing of the coefficients” like mentioned by Dimatteo. 

Other approach exists concerning the spline approximation notably P-splines 
(Eilers and Marx, 1996; Brezger and Lang, 2006). These methods use a relatively 
large number of knots and to prevent overfitting, a penalty on the second derivative 
restricts the flexibilty of the fitted curve. In our work, we use the knot location to 
interpret the results, and in this context the P-splines are not adapted. 

With respect to the spline logistic regression model, it is defined by 

( ) ( )( )
( )( ) .,,exp1

,,exp
rxs

rxsxf
β+

β=  (7) 

Thus, the logit function (6) can be written as a spline function 

( ) ( )
( ) ( ).,,1ln rxsxf

xfxg β=
−

=  (8) 

Let ( ),, ii xy  where ,...,,1 ni =  the n observed independent pairs. We 

approxime the logit of the conditional probability of success by a B-spline model. 

Using (8), we obtain: 
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where for ( ( )) 1...,,1,,...,,1 ++=⋅=
jj dkl

jj
l rBpj  is the B-spline matrix, jr  is the 

knots vector, j
lβ  are the spline coefficients, jk  is the fixed number of knots and jd  

the fixed degree of the spline function. The associated likelihood is defined by 
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 (10) 

The estimate of the logit function with a linear spline 1=d  implies easy 
interpretation. So, we let .11 === pdd "  In fact, knots are points where the slope 

is changing in the shape of the piecewise linear function. So, a quick change of slope 
can be interpreted as a point separating the variable range into two parts and the knot 
location corresponds to a threshold value. 

From a clinical point of view, knot location represents the threshold value of the 
risk factor for which the probability of a disease occurring suddenly changes. 
Moreover, we can define the notion of odds ratio on each interval. In practice, only a 
small number of threshold values are of clinical interest. A good working model 
provides one or two threshold values which allow the classification of the patients 
into two or three groups for differentiation of treatment. 

3. Bayesian Estimation of The Logit Function 

This section presents essential background on Reversible Jump MCMC, 
proposed by Green (4). The adaptation of this algorithm for the spline regression is 
given. 

3.1. RJMCMC 

The reversible jump MCMC algorithm allows simulation from target 
distributions on spaces of varying dimension, it can be considered as a general 
framework for Metropolis-Hastings algorithms ((7), (8)). 

Consider the following hierarchical model: let k be a indicator from a coutable 

set K  and ( )kθ  be the parameter vector. Each k determines a model kM  defined 

by ( ),kθ  with dimension of the parameter space ( )kΘ  allowed to vary with k. 
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The joint distribution of ( ( ) ),, yk kθ  where y is the data vector, is modeled as: 

( ( ) ) ( ) ( ( ) ) ( ( ) ),,, kkk kypkpkpykp θ||θ=θ  

i.e. the product of model probability, parameter prior and likelihood. Inference about 

k and ( )kθ  will be based on the joint posterior ( ( ) ),, ykp k |θ  which is known as the 

target distribution. For convenience, we abbreviate ( ( ) )kk θ,  as z and we note ( )dzπ  

this target distribution. Given k, z lies in { } ( ),k
k kC Θ×=  while generally 

∪ K∈
=∈

k kCCz .  

In Markov Chain Monte Carlo computation, an aperiodic and irreductible 
Markov transition kernel ( )zdzP ′,  is constructed and it satisfies detailed balance: 

( ) ( ) ( ) ( )∫ ∫ ∫ ∫ ′′π=′π
A B B A

dzzPzdzdzPdz ,,,  (11) 

where ., CBA ∈  We simulate this chain to obtain a dependent, approximate, 

sample from ( ).dzπ  

In our case, we have multiple parameter subspaces { }kC  of different dimension. 

A method that switches between these subspaces is needed. For all that, 
different types of move between the subspaces can be defined. If the current state is 
z, a move of type m to state zd ′  with probability ( )zdzqm ′,  is defined and is 

accepted with probability 

( ) ( ) ( )
( ) ( ) .,

,,1min,








′π
′′π

=′α zdzqdz
dzzqzdzz

m
m

m  (12) 

For move z to ,z′  we must generate ramdom numbers u and set z′  as a 

determinist function of z and ( ).,: uzzzu ′=′  The reverse move from z′  to z has to 

be defined symmetrically by generating random numbers u′  and setting 
( )., uzzz ′′=  The vectors of Markov chain states and proposal random variables 

( )uz,  and ( )uz ′′,  must be of equal dimension, that is, the crucial dimension 

matching condition: 

,2211 nnnn ′+=′+  
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where ,1n  2n  are the dimensions of z, z′  respectively, and ,1n′  2n′  are the 

dimensions of u, u′  respectively. 

The ratio (12) becomes 

( ) { }ratio proposal prior   ratio likelihood,1min, ××=′α zzm  

( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( ) .,

,,1min
1
2







∂
′′∂

|′
′′|′

|
′|= uz

uz
uqkkp
uqkkp

zp
zp

zyp
zyp  

where ,1q  2q  are the distributions of u, u′  and ( )
( )uz

uz
,
,

∂
′′∂  is the jacobian. Often in 

practice .211 nmn =+  Consequently only for the birth step a random u is necessary 

and we omit in the ( )zzm ′α ,  the terms ( )uq ′2  and .u′  

3.2. RJMCMC for B-spline logistic regression 

We have defined in 2.2 the spline logistic regression model with free-knots. We 
use the RJMCMC algorithm of previous section to select the number and the 
position of knots to have the best adjustment. For a Bayesian approach, let us 
formulate the hierarchical model: we take the number of interior knots k as random, 
from some countable set .K  kM  denotes the model with exactly k interior knots 

and ( ) ( )k
k rrr ...,,1=  denotes the interior knot locations, with min0 Xr =  and 

max1 Xrk =+  as the boundary knots. 

As concerns the vector of spline coefficients ( ) 11 ++≤≤β=β dkii  is to be estimed 

from the data by means of the standard least squares regression theory. A complete 
Bayesian approach would include these coefficients in the vector of parameters (see 
Dimatteo (13), Johnson (17)). However, Denison and al. (9) seem shown that the 
least squares estimation approach leads to no significant deterioration in the 
performance of the algorithm and avoids an additional computational burden. 

We shall generate samples from the joint posterior of ( ( ) )., krk  By taking into 

account the varying dimensionality, we have to develop appropriate reversible jump 
moves. 

For this problem, possible transitions (9) are 

1. the addition of a knot (a birth step), 
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2. the deletion of a knot (a death step), 

3. the movement of a knot. 

These independent move types are randomly chosen with probability kb  for 

move k to 1+k  (i.e. birth step), kd  for move k to 1−k  (i.e. death step) and kη  for 

the move step. These probabilities satisfy 1=η++ kkk db  for all k. 

3.2.1. Prior specifications 

Let { }....,,0 maxkk =∈ K  We use a truncated Poisson distribution, with 

parameter λ restricted to the countable set ,K  to specify the prior for k: 

( ) ( )
{ }( )kkkp k

k
max...,,01!

exp λ−λ∝  

The ir  are taken to be the order statistics from a uniform random variable with 

state space the candidate knot locations { },...,, 001 Krr=R  where Krr 001 ...,,  are 

disributed equidistantly over the interval ] [,, maxmin XX  i.e. the knots are equally 

spaced. Then the prior distribution for ( ) ( )k
k rrr ...,,1=  is  

( ( ) ) ,!
k

k

K
kkrr =|  

where K is the number of possible emplacements. As concerns the parameter ,λ  it 
could be altered depending on the prior beliefs the researchers may have about the 
smoothess of the logit function. Small values of λ reflects a stong insistence on 
smoothness. 

3.2.2. Move step 

The move step consists in choosing a knot uniformly, say ,jr  among the set of 

moveable knots and proposing this knot to be moved to another position .R∈′jr  A 

knot { }kj rrr ...,,1∈  is called moveable ((1)), if the number jm  of vacant candidate 

knots R∈ir0  with 101 +− << jij rrr  is at least 1. Let ( ).krr =  The number ( )rn  

of moveable knots then is defined as 

( ) { { }}....,,1,1 kjmrcardrn jj ∈≥|=  
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So, firstly, we draw a knot jr  uniformly among ( )rn  moveable knots with 

probability ( ) ( )rnrp j
1=  and, given ,jr  we draw uniformly jr′  (the new position) 

among the set of jm  vacant candidate knots, with probability ( ) .1
j

jj mrrp =|′  

The corresponding proposal ratio is given by 

( ) ( )
( ) ( )

( )
( )

( )
( ) .ratio proposal rn
rn

mrn
mrn

rprrp
rprrp

j

j

jjj

jjj
′=′′=

|′
′′|

=  

The prior ratio is 1 because all collections of the same number of knots have the 
same prior probability. The acceptance probability for such a move step is 

( )( ) ( )
( )( ) ( ) ,,

,,1min






′|
′|=α rnrkyp

rnrkyp  

where ( )( )rkyp ′| ,  is the spline likelihood. 

3.2.3. Changing dimension 

Let ( ( ) )krkz ,=  the current state of parameters. We define ,1max0 == kdb  

00max == dbk  and otherwise .31== kk db  

In the birth step, given k, we add a new knot ( )., 1+∈′ jjj rrr  jr′  is drawn 

uniformly with probability ( ) ( )kKrp j −=′ 1  from the set of the ( )kK −  vacant 

candidate knots .0 R∈ir  We have ( ),,1 rkz ′+=′  where 

( )....,,,,...,, 11 kjjj rrrrrr +′=′  For the birth step, the prior ratio is given by: 

knots  of locationfor prior 
knots 1 of locationfor prior 

knots for prior 
knots 1for prior ratioprior k

k
k

k ++=  

( )
( )

( )
( )krp

krp
kp

kp
|
+|′+= 11  

( )
( ) .11

K
k

kp
kp ++=  
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The corresponding proposal ratio is given by 

( )
( )kKb

kd
k
n

−
+

= +
1

11ratio proposal 1  

( )
( ) .1
1

+
−

= +
kb

kKd
k

k  

In the death step, the proposed knot to delete is simply chosen uniformly from 
the knots of the current model, so it is drawn with probability ( ) ( ).111 +=+ krp j   

The acceptance probability for the birth step is 

( ) ( )
( ) .ratio proposalratioprior ,1min,





 ××

|
′|=′α zyp

zypzz  

For the death step, it is the same except that the fraction is inverted. The 
coefficients β are estimated at each step through the function glm.fit available in the 
R package. 

In the multivariate case, we let ∑ =
=

p

i ikk
1

,  where ik  is the spline degree is  

and ( ) ( ( ) ( ) )pkkk rrr ...,,1=  the parameter vector for each spline. The same 

movements are used that in previous algorithm: addition, deletion or movement of a 
knot. At each iteration, we choose randomly the spline which we are going to 
modify. The prior for k is a truncated Poisson distribution with parameter .λ  The 
choice of this parameter reflects, in this context, the parsimony of the model. 

4. Data Analysis 

In this section, we illustrate the reversible jump algorithm with two examples: a 
simulation study and an analysis of a real data set from an in vitro fertilization 
program. 

4.1. Simulation settings 

We have simulated 2000 data according to a logistic model defined by: 

( ) ( )
( ) ( ) [ ],65,15,8cos1ln ∈=

−
= xxxf

xfxg  

where x is genereted from a uniform distribution on [15, 65]. We use the RJMCMC 
algorithm with splines of degree 1=d  and ,2=d  to estimate this function. Let 
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1=λ  be the parameter of Poisson distribution and ,5max =k  in fact a large number 

of knots is unlikely to be required. In Figure 1, we display the true function along 
with corresponding spline model estimates with degree .2,1=d  The MSE is given 

by 

{ ( ) ( )}∑
=

−=
n

i
ii xfxfnMSE

1

2,ˆ1  

where f is the true function and f̂  is our estimate to the true function. The MSE are 

: 0.03 for the spline of degree 2 and 0.04 for the linear spline. Thus, we find a 
slightly lower MSE for the estimate when using a spline of degre 2 instead of linear 
spline. 

4.2 Analysis of FIV data 

Many couples resort to in vitro fertilization (IVF), when they have difficulties 
conceiving children. The principal advantage of IVF is to control follicular growth, 
ovulation, sperm quality and the early development of fertilized eggs. The study 
carried out by Roseboom et al. performed a multiple logistic regression analysis in 
order to evaluate the relationship between various factors and pregnancy. The study 
led by Demouzon et al. (2) leading even results: the probablity of pregnancy for each 
cycle is a_ected by the age of the patients. We want to validate this result by the new 
method proposed in the previous sections. 

 

Figure 1. The true curve: -, the estimated logit function by a spline model of degree 
:1=d  -- and by a spline model of degree :2=d  ... 
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The french national register of in vitro fertilization (Fivnat) records all of the 
IVFs carried out in France. This population-based study is a cohort of 23, 520 
couples which underwent IVF for the first time between 1994 and 1996. Couples 
were followed up until they obtained a possible clinical pregnancy or until the 31st 
of December 1998. A total of 7892 pregnancies were recorded. For each couple, the 
age of the woman and the age of the man at the first attempt are available. Generally, 
we take the degree of the spline 0>id  and the knot number .0≥ik  However, in 

epidemiology a smaller number of groups is preferred, so { },5...,,0∈ik  and to 

allow the interpretation of the results, more precisely to separate the patients in 
different groups, we let .1=id  

 

Figure 2. The posterior distribution of k (left) and of r given k (right) 

First, we consider the univariate spline model for the age of women. The 
RJMCMC is used to select the number and location of knots. We let 1=λ  for the 
parameter of the prior distribution of k and .5max =k  We choose these values 

because we wish have a smooth function (i.e. with few knots) and few groups of 
patients. 
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As concerns the parameter ,λ  we have tested others values; the results are  

 

Figure 3. The logit function (i.e. the IVF success rate) according to age of women 
approximed by a spline model with 2=k  and .1=d  

the same thus the method seems robust. For the candidate knot location R  the knots 
are equally spaced of 3 years. The different reversible jump moves have seen in 3.2, 
the vector β is approximated at each iteration. The estimates are obtained with 20000 
iterations and a burn-in time of 5000. 

The posterior distribution for k is shown at left in Figure 2, it indicates a mode 
at .2=k  From the right part of this figure, we see the posterior distribution of r 
given .2=k  The knot locations selected are 34 and 40. The figure 3 shows the 
corresponding logit function estimated by a spline of degree one and with two knots 
located at age of 34 and 40 years. We have fixed the spline degree at 1=d  to be 
able to interpret the results. From figure 3, the knot locations correspond to break 
points of the logit function. Indeed, before the first knot, the function seems 
constant, between the two knots it decreases, and after the second knot, it decreases 
sharply. Thus, the ages of 34, 40 can be interpreted as threshold values for IVF 
success. These results are consistent with the results found in previous studies ((11), 
(2)) using the classical criterion BIC. 

Secondly, we model the bivariate spline model for the age of women and men. 
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Let ,10max =k  1=λ  and ,11 =d  .12 =d  For each variable, we define a 

candidate knot site where the knots are equally spaced. 

 

Figure 4. The posterior distribution of 1k  and .2k  

 
Figure 5. The posterior distribution of 1r  given 21 =k  (left), the logit function (i.e. 

the IVF success rate) according to age of women approximed by a spline model with 
21 =k  and 11 =d  (right) and the logit function according to age of men 

approximated by a spline model with 02 =k  and 12 =d  (down). 
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Figure 4 shows the posterior distribution of 1k  and .2k  For the age of women, 

the posterior distribution indicates a mode at 2. Concerning the age of men, we 
retain any interior knot, the figure 5 shows a linear effect of age of men in IVF 
success. The left part of the figure 5 illustrates the posterior distribution of 1r  given 

21 =k  (i.e. for the age of women); it indicates two knot locations at 34 and 40 

years. These knots are full meaningful and according to the right part of the figure 5: 
we can assume the ages of 34 and 40 as threshold values for the IVF success. These 
results are consistent with the previous study using the univariate spline model. 
These results show the important role played by the age of women in IVF success. 

5. Discussion and Future Plans 

In summary, the use of B-spline to model the logit function helps explain the 
relationship between response and explanotary variables without imposing a linear 
link between these variables. In fact, B-spline modeling is more flexible. 
Furthermore, the linear spline model reconsiders the knots as threshold values. Thus 
we can classify the patients into groups for treatment differentiation. Finally, the 
advantage of the RJMCMC algorithm is demonstrated by the direct identification of 
the number of knot without resorting to model selection criterion such as the BIC or 
AIC. 
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